A Compact Fusion Device based on the Sheared Flow Stabilized Z-Pinch*

Uri Shumlak for the FuZE Team

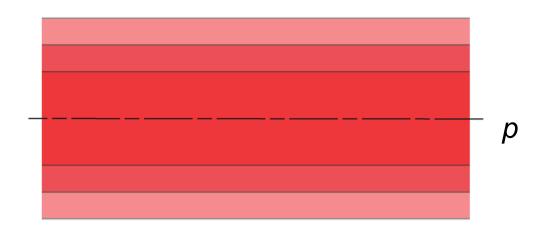
U. Shumlak¹, H.S. McLean², B.A. Nelson¹, A. Schmidt², E.L. Claveau¹, E.G. Forbes¹, R.P. Golingo¹, D.P. Higginson², A.D. Stepanov¹, K.T. Tummel², T.R. Weber¹, Y. Zhang¹

¹University of Washington, Seattle ²Lawrence Livermore National Laboratory with Zap Energy Inc.

ALPHA Annual Review Meeting

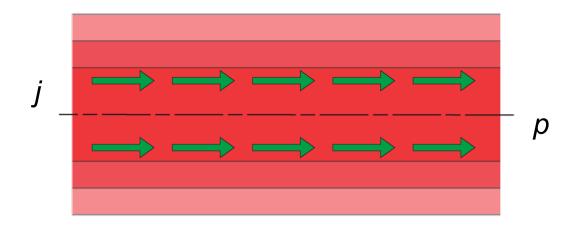
29-31 August 2017 San Francisco, California

*This work is supported by a cooperative agreement from ARPA-E.


Presentation Outline

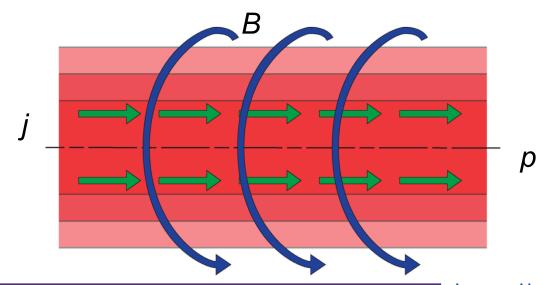
- The simplicity and many other advantages of the Z-pinch
- Historical scientific development leading to our sheared flow stabilization approach – SFS Z-pinch
- ARPA-E-funded FuZE, Fusion Z-pinch Experiment, and the development path for the SFS Z-pinch
- Recent alignment of critical factors that make now the right time to advance the SFS Z-pinch as a compact fusion reactor

The Z-pinch has the simplest geometry of any magnetic confinement configuration:


cylindrical plasma column

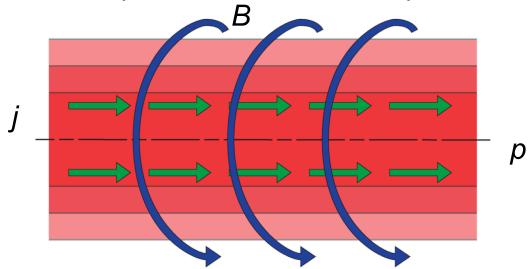
The Z-pinch has the simplest geometry of any magnetic confinement configuration:

- cylindrical plasma column
- directly driven axial current



The Z-pinch has the simplest geometry of any magnetic confinement configuration:

- cylindrical plasma column
- directly driven axial current
- self-generated magnetic field compresses the plasma



The Z-pinch has the simplest geometry of any magnetic confinement configuration:

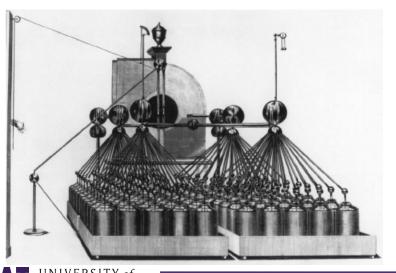
- cylindrical plasma column
- directly driven axial current

- $\frac{dp}{dr} = -\frac{B}{\mu_o r} \frac{d(rB)}{dr}$
- self-generated magnetic field compresses the plasma
- \triangleright perfect utilization of the magnetic field for compression, β =100%
- no magnetic field coils: greatly reducing cost, size, and complexity
- increasing the current generates higher plasma parameters, increased fusion production, and smaller plasma radius

Z-pinch research predates nuclear fusion understanding

1790: Earliest "Z-pinch" research by Martinus van Marum

1905: Observation of crushed lightning rod by Pollock & Barraclough

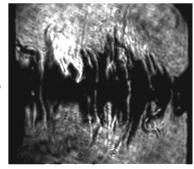

1907: "Pinch phenomenon" in liquid conductor by Northrup

1934: Theoretical model of plasma Z-pinch by Bennett

1950: Z-pinch was Project Sherwood Jim Tuck's preferred approach to achieve controlled fusion

1957: Theory and experiments demonstrated virulent instabilities, m = 0, 1

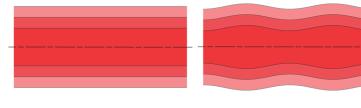
1998: Performance of Z-pinches using frozen deuterium fibers was severely limited by these instabilities

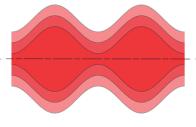


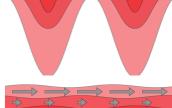
27 ns

55 ns

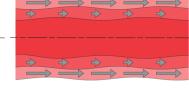
117 ns

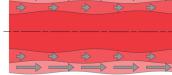

Key Innovation: sheared flows can stabilize the Z-pinch


Prior theoretical and experimental research focused on static Z-pinch plasmas, and demonstrated that m = 0 and m = 1 instabilities persist.


1995: Theoretically demonstrated that a Z-pinch could be stabilized with

low-speed axial flows → sheared flow stabilization (SFS).




Sheared flow

$$\frac{dv_z}{dr} \neq 0$$

VOLUME 75, NUMBER 18

PHYSICAL REVIEW LETTERS

30 October 1995

Sheared Flow Stabilization of the m = 1 Kink Mode in Z Pinches

U. Shumlak*

High Energy Plasma Division, Phillips Laboratory, Kirtland Air Force Base, Kirtland, New Mexico 87117-5776

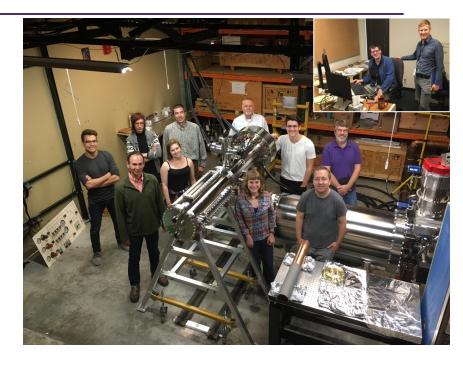
C. W. Hartman

Lawrence Livermore National Laboratory, Livermore, California 94550 (Received 6 April 1995)

The effect of a sheared axial flow on the m=1 kink instability in Z pinches is studied numerically by reducing the linearized magnetohydrodynamic equations to a one-dimensional displacement equation. An equilibrium is used that is made marginally stable against the m=0 sausage mode by tailoring its pressure profile. The principal result reveals that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold that is dependent on the location of the conducting wall. For the equilibria studied here the maximum threshold shear (v_1^t/kV_0^t) was about 0.1.

Scientific advancement of sheared flow stabilization

1998 – 2014: DOE-funded experimental project at the University of Washington to conduct a scientific investigation of sheared flow stabilization in the Z-pinch → ZaP & ZaP-HD projects

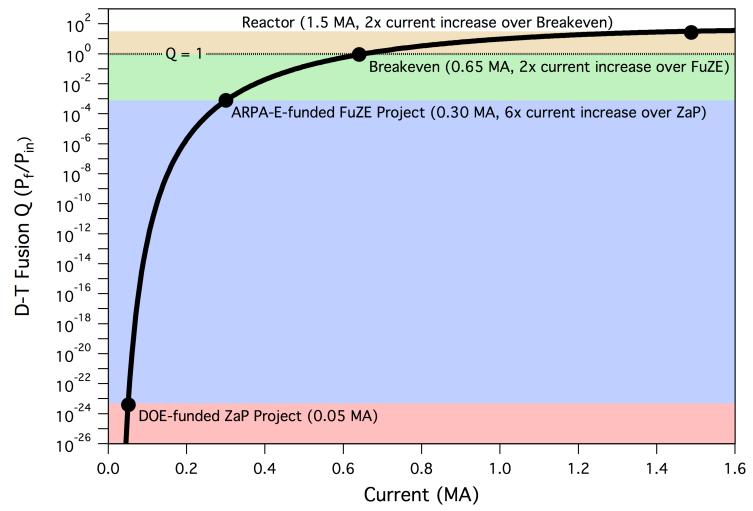

- produced long-lived, stable Z-pinch plasmas
- demonstrated robustness of sheared flow stabilization: stable for 1000's times longer than static pinch
 - investigated limits of stability
 - developed understanding of plasma behavior and how to control it
 - achieved pinch currents of 50 kA

FuZE Project is advancing the SFS Z-pinch for fusion

Sheared flows provide complete stability at moderate plasma currents.

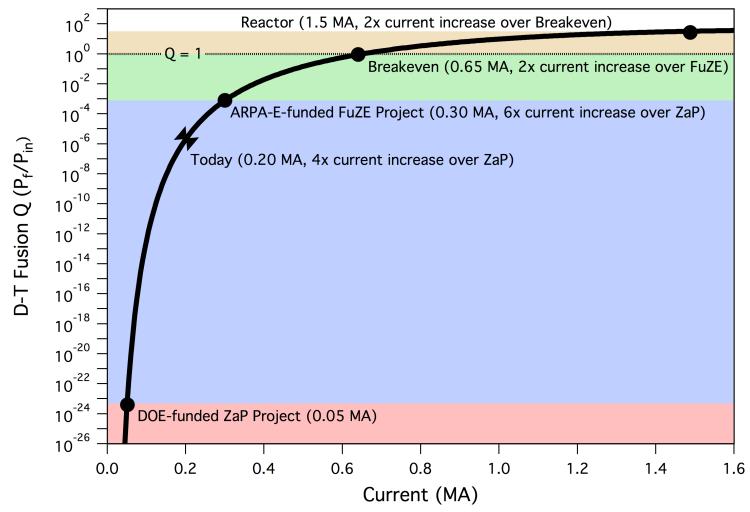
Will the stabilizing effect continue as current is increased?

ARPA-E ALPHA Program funded the UW/LLNL FuZE Project at ≈10x previous levels to explore the potential of the SFS Z-pinch as a compact fusion device.



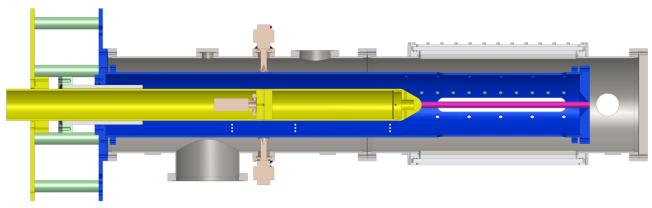
- incorporates LLNL's scientific expertise and hardware
- builds on the success of our previous SFS Z-pinch projects
- ➤ to advance the SFS Z-pinch fusion concept to the next step along the development path.

Development path for the SFS Z-pinch fusion core


Increases in plasma current mark the key steps along the development path for the SFS Z-pinch fusion core.

Development path for the SFS Z-pinch fusion core

Increases in plasma current mark the key steps along the development path for the SFS Z-pinch fusion core.



Now is the right time for SFS Z-pinch fusion

Four critical factors have converged:

- 1. <u>ARPA-E funding</u> has enabled us to push the SFS Z-pinch concept much further than previously possible, e.g. 6x current increase.
- 2. Computational power and simulation tools allow detailed modeling of sheared flow stabilization that support the experimental effort.
- Encouraging experimental and computational results indicate sheared flow stabilization is robust even at higher currents. (Visit our technical poster for details.)
- 4. <u>Growing recognition</u> that a carbon-free power source is desperately needed and that current mainline fusion approaches are too costly and advancing too slowly to contribute to the solution.

ZAP ENERGY INC

RAISING SERIES A FUNDING

- ◆ ZAP ENERGY INC was incorporated in May 2017 as a spin-out from the UW and LLNL, contact Benj Conway, reachout@zapenergyinc.com
- ◆ ZAP ENERGY is raising Series A funding to demonstrate breakeven
- Targeting a compact, commercial fusion application
- Building on significant breakthroughs in fusion technology developed by UW and LLNL team since 2015
- ◆ Signed a proprietary intellectual property licensing agreement in June 2017
- ARPA-E funded until August 2018 after which ZAP ENERGY team to physically spin-out of UW onto new premises
- ◆ Team has over 90 years combined experience in fusion research
- Substantial advantages by removing the need for costly and complicated magnetic coils
- FuZE project equipment provided by UW to ZAP ENERGY on loan
- Substantially reduced risk through validation of technology with historical DOE grant funding and existing ARPA-E award, which provides funding through August 2018

